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IV. CONCLUDING REMARKS 

In the preceding sections we have developed a theory 
of the electronic ground state which is exact in two 
limiting cases: The case of a nearly constant density 
(w=Wo+w(r), fl(r)/fio<<^l) and the case of a slowly 
varying density. Actual electronic systems do not belong 
to either of these two categories. The most promising 
formulation of the theory at present appears to be that 
obtained by partial summation of the gradient expan
sion (Sec. III.4). I t has, however, not yet been tested 
in actual physical problems. But regardless of the out
come of this test, it is hoped that the considerations of 
this paper shed some new light on the problem of the 

I. INTRODUCTION 

TH E advent of masers and lasers has stimulated a 
great deal of interest in the interaction of intense 

electromagnetic fields with matter. This activity has 
been focused on three different aspects of the subject. 
First, a great deal of attention has been devoted to the 
dynamics of production of high-intensity light.1 A 

* A preliminary version of this work was presented at the 
Pasadena Meeting of the American Physical Society, Bull. Am. 
Phys. Soc. 8, 615 (1963). 

f Present address: Lowell Technological Institute, Lowell, 
Massachusetts; on leave from the U. S. Naval Ordnance 
Laboratory. 

t National Academy of Sciences—National Research Council 
Postdoctoral Research Associate, 1962-64. 

1 J. R. Singer, Masers (John Wiley & Sons, Inc., New York, 
1900); F. Schwabl and W. Thirring (to be published); W. E. 
Lamb, Jr., Lecture Notes, Enrico Fermi International School of 
Physics, Varenna, 1963 (unpublished). 

inhomogeneous electron gas and may suggest further 
developments. 
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second area of concentration is the question of proper 
description of the electromagnetic radiation emanating 
from a laser; i.e., questions of coherence and correla
tion.2 And finally, the problem of interaction of laser 
light with matter has attracted considerable interest.3 

I t is this latter question to which we are devoting our
selves in this paper. 

The particular problem of immediate interest is the 
effect of the presence of the high-intensity field on the 
Compton (Thomson) scattering amplitude. Recall that 
the Thomson amplitude describes the scattering of a 

2 R. Glauber, Phys. Rev. 130, 2529 (1963); E. C. G. Sudarshan, 
Phys. Rev. Letters 10, 277 (1963); E. Wolf, Proc. Phys. Soc. 
(London) 80, 1269 (1962). 

3 J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. 
Pershan, Phys. Rev. 127, 1918 (1962); Z. Fried and W. M. Frank, 
Nuovo Cimento 27, 218 (1963). 
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"Thomson" scattering of a high-intensity, low-frequency, circularly-polarized electromagnetic wave by a 
free electron is considered. We find that by neglecting radiative corrections and pair effects, the Feynman-
Dyson perturbation expansion is summable, and the sum can be analytically continued in the form of a sum 
of continued fractions. By imposing the boundary conditions that at t— ± °° the photons and target electron 
propagate as free particles, we obtain results which differ from those reported by Brown and Kibble and by 
Goldman. In particular our results differ in two aspects. The first difference is in the kinematics; namely, we 
find no intensity-dependent frequency shift in the scattered photon. The second difference is in the dynamics; 
that is, we obtain a different expression for the scattering amplitude. Both of these changes originate in the 
choice of boundary conditions. Instead of treating the asymptotic radiation field classically, we choose our 
states as linear combinations of occupation-number states. Finally, contact is made with the results of Brown 
and Kibble and of Goldman using a mixed set of classical and quantum boundary values. 
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low-frequency photon by an unbound charged particle. 
From the point of view of photons the question of course 
is what, if any, effect does the presence of the other 
photons in the scattering region have on the probability 
amplitude for scattering of a single photon out of the 
incident beam. This question can be studied of course in 
perturbation theory.4 One finds, however, that the re
sults obtained in a power-series expansion diverge with 
decreasing o> (the angular frequency of the radiation). 
Since this divergency is a direct result of the photon's 
vanishing mass, it should perhaps be dubbed as the in
frared divergence in the incident state.6 Clearly, per
turbation theory is misleading. I t has been recognized 
by one of us (Z. F.) about a year ago that this divergence 
disappears when the problem is treated outside the con
text of perturbation theory.6 The major defect of that 
treatment, however, is that only one part (p-A+A-p) 
of the interaction Hamiltonian was included in the 
calculation. Subsequently, Brown and Kibble7 and 
Goldman8 have presented a more complete treatment 
including the A -A terms. They find: (a) that the scat
tering amplitude is modified in a nontrivial fashion by 
the presence of the external field, and (b) that there is a 
frequency shift in the scattered photon which is a func
tion of the incident photon density. Their treatment is 
based essentially on the Volkov9 solution of the Dirac 
equation in the presence of an external field. 

The aim of this paper is twofold. On the one hand, 
we demonstrate that covariant perturbation theory 
yields summable results. Specifically, we show that the 
perturbation series can be summed, for sufficiently low 
values of the parameter e2p/ni2oo, in terms of infinite 
convergent continued fractions. The sum may then be 
analytically continued to arbitrarily high values of 
e2p/rn2u. Consequently, this sum is no longer divergent 
as co —•> 0. Also, we wish to stress that by using the 
Feynman-Dyson perturbation procedure and the adia-
batic switching hypothesis, one finds that there is no 
intensity-dependent frequency shift in the scattered 
photon. The lack of frequency shift is a direct conse
quence of our way of treatment of this problem; viz., 
that asymptotically we describe the radiation field as a 
collection of freely propagating quanta. Another conse
quence of this choice of asymptotic states is that the 
scattering amplitude itself differs from the expressions 
found in Refs. 7 and 8. We will also show that with a 
certain set of asymptotic states the perturbation series 
reproduces the results of Brown and Kibble7 and 
Goldman.8 

In Sec. I I we explain our method of summation, where 

4Vachaspati, Phys. Rev. 128, 664 (1962) and 130, 2598(E) 
(1963); P. Stehle, J. Opt. Soc. Am. 53, 1003 (1963). 

5 This infrared divergence is completely classical. See Vachas-
pati, Ref. 4. 

•Z. Fried, Phys. Letters 3, 349 (1963). 
7 L. S. Brown and T. W. B. Kibble, Phys. Rev. 133, A705 

(1964). 
8 1 . I. Goldman, Phvs. Letters 8, 103 (1964). 
9 D. M. Volkov, Z. Physik 94, 250 (1935). 

for ease of presentation we consider a model theory with 
an interaction Lagrange density LT=g2<t>*(x)<j>(x)x2(%) • 
<£* and <j> are charged scalar fields whose quanta are 
massive particles. This is the target particle. %(#) is a 
neutral scalar massless field whose quanta impinge on 
the target. The relative simplicity of this model is due 
to the fact that only one type of vertex appears in the 
calculation. 

In Sec. I l l we consider electrodynamics, and to sim
plify the problem we treat the case of an incident beam 
of circularly polarized photons impinging on a spinless 
electron. The choice of scalar electrons does not greatly 
affect the results, since for low frequencies, spin effects 
are small. Here we content ourselves with leaving the 
answer expressed in continued fractions. The present 
state of the art in laser technology does not warrant a 
numerical evaluation of the answer. 

In Sec. IV we apply our methods to harmonic produc
tion, while in Sec. V we attempt to elucidate the origin 
of the earlier results reported in the literature.7,8 

Finally an Appendix concerning continued fractions 
and another on wave function normalization completes 
our discussion. 

II. EXACT SEMICLASSICAL SOLUTIONS BY 
GRAPH SUMMATION 

In this section we will show that certain so-called 
semiclassical problems may be solved exactly by sum
ming all the Feynman graphs appearing in the perturba
tion series. (The precise meaning here of the term 
"semiclassical" will become apparent shortly.) Specifi
cally, we solve exactly to all orders in the coupling 
constant, by graph summation, the problem of Compton 
scattering of a single spin-zero boson (called a <f> particle) 
of mass IJL by an intense beam of massless and spinless 
X particles. That is, we are interested in the matrix 
element10 

(p',k',{N-\)k\S\p,Nk) (II-l) 

in the limit that N, the number of x particles in the 
beam, and V, the normalization volume, become very 
large, while the density of x particles, p=N/V, remains 
finite and constant. Here p^ (£,p) and pil

f^=(Ef^f) 
are the initial and final four-momenta of all x Par~ 
ticle; &M=(w,k) is the common four-momentum of 
all x particles in the beam; and k,/ = (w',k') is the four-
momentum of the single % particle scattered out of the 
beam. These momenta describe the asymptotic <£ and x 
particles and so satisfy p2 — p'2 = \x2^ and k2 — k'2 = 0. 

10 Strictly speaking, one should evaluate the 5-matrix between 
so called coherent states. [These states of the radiation field are 
discussed by Glauber, Phys. Rev. 131, 2766 (1963) and S. S. 
Schweber, J. Math. Phys. 3, 831 (1962).] The transition amplitude 
(in the notation of Glauber) would then be a sum of terms 

S af-Wip'^N-l)k,k'\S\p,Nk), 
i V = l 

where akN are arbitrary complex amplitudes. In the limit as 
iV —-> oo, however, only one term survives. 
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Also, S is the scattering operator denned in the usual 
way11 in terms of Dyson's time-ordering symbol T, and 
the normally ordered interaction Hamiltonian in the 
interaction picture Hi(x): 

5 = 1 + E 
m > l 

(-i) •r r 

! J 

••I-X / dxnlZHiixt) • • • # i ( x m ) ] . {11.2) 

In this model calculation we choose the interaction 
Hamiltonian to have the form 

#/(*) =+«W(**(*)*(*)x*(*)), (II.3) 

where N indicates normal ordering, and <t>(x) and %(#) 
are the scalar field operators for the <£ and % particles, 
respectively. In the following sections, where we discuss 
electrodynamics, the x particles will be given unit spin 
and Hi will acquire a linear term in accordance with 
gauge invariance, but the following method of summa
tion will be seen to be able to accommodate these com
plications easily. Before embarking on the summation 
program we will introduce an important simplification 
which has the effect of defining what we mean by 
"semiclassical." We imagine the beam of x particles to 
be very intense, and so ignore terms in the series (II.2) 
due to radiative corrections and virtual pair creation. 
Also we ignore processes in which more than one x 
quantum is scattered from the incident beam.12 

I t is helpful at this point to make several observations 
about the Feynman graphs arising from the perturba
tion series. Each allowed graph consists of a single con
tinuous 4> particle line joined at a number of vertices 
by x particle lines. The numbers of x lines emitted and 
absorbed by the <j> line are equal. All of the x lines ex
cept one have momentum k^; the exception is an emis
sion line with momentum kj. For convenience we will 
refer to the vertex where this exceptional x particle 
joins the <j> line as the scattering vertex; all other ver
tices are forward-scattering, or, for short, nonscattering, 
vertices. The form of the interaction Hamiltonian makes 
it apparent that there are only two kinds of scattering 
vertex, and only three kinds of nonscattering vertex. 
These are illustrated in Figs. 1 and 2. 

11 Our factors of i and 2ir, our choice of metric, and expressions 
which we refer to as "usual" or "familiar" will be those found in 
S. S. Schweber, An Introduction to Relativistic Quantum Field 
Theory (Row, Peterson Company, Evanston, Illinois, 1961). 

12 If the external field is large enough, then term by term an 
external field vertex will always contribute more to the amplitude 
than radiative corrections. If all the external vertex terms were 
positive, we could also state unequivocally that the sum total of 
radiative corrections is negligible. Since this is not the case we 
cannot conclude as to the effect of radiative corrections on the 
amplitude. In spite of this, it is still of great interest to study this 
incomplete problem. All the omissions made are of a nature which 
keeps the problem "classical"; i.e., all the parameters can be 
expressed in terms of classical quantities such as electromagnetic 
energy density, rest energy of the electron, and wave length of the 
incident light. 

(a) (b ) 

FIG. 1. Possible scattering vertices. The single vertical line is the 
<f> particle, horizontal lines are the beam particles with momentum 
kp, and the skewed line is the scattered % with momentum &/. 
Incoming x's are always drawn entering the diagram from the 
left; outgoing x's leave the diagram to the right. The <f> line is 
directed upward. 

Let us look closely at a typical nonscattering vertex 
such as is shown in Fig. 3. The incoming virtual <j> 
momentum is pfi-\-2(m~\-l)k^ indicating that the <£ 
particle has already absorbed a net number 2m+2 of 
x's from the beam. Application of the usual Feynman 
rules gives us the value of this vertex: 

- t (27r) 4 g 2 (^-2m-l) 1 / 2 ( iV"-2w) 1 / 2 /2coF, 

where co is the beam frequency and V is the normaliza
tion volume. The square-root factors come from the 
boson statistics involved in the double emission pro
cess; N is the very large number of x's initially in the 
beam. In the limit NyV —>co ? N/V=p, the vertex value 
becomes 

- ; ( 2 T T ) V ( P / 2 C O ) . (II.4) 

By taking the limit at this stage we are implying that 
the beam density is so great that depletion effects are 
negligible. Consequently, all statistical factors become 
y/N, so the value of any nonscattering vertex, whether 
it describes emissions or absorptions, is given by (II.4). 
The contribution of the propagators to the value of a 
graph is completely standard. The value of the propaga
tor immediately following the vertex in Fig. 3 is 

1 

(2TT)4 (p+2mky-(x2 (2wyAmp-k 
(H.5) 

I t is very convenient to adopt a simple condensed no
tation for the graphs. Observe that every graph has 
exactly the same number of nonscattering vertices as it 
has 0 propagators. Starting at the bottom of a graph, 
each nonscattering vertex is associated with the prop
agator following it, until the scattering vertex is reached. 
I t is not associated with any propagator. After the 

» > f 

(a) (b) (c) 

FIG. 2. Possible nonscattering vertices. 
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p+2mk 
FIG. 3. A typical double-emis

sion nonscattering vertex. 

p+2(m + l)k 

scattering vertex, each nonscattering vertex is associated 
with the propagator preceding it. The propagators and 
nonscattering vertices are thus paired in a simple and 
unambiguous way. 

Then, since all vertices give the same contribution, 
we multiply each propagator value by the value of its 
associated vertex to get the propagator-vertex value 
appropriate to each segment of a graph. For example, 
the propagator-vertex value associated with the seg
ment of the graph including the vertex and the propa
gator immediately following it in Fig. 3 is simply 

g2P 1 
%2rr, 

2co 4mp-k 2m 
(II.6a) 

For the purposes of diagram summation the significant 
feature of the propagator-vertex factor %im is that it is 
proportional to 1/m. For brevity we have lumped to
gether the density dependence, the kinematic factors, 
and the (p • k)~l term into a single proportionality con
stant a /2 . If the propagator-vertex pair under considera
tion occurs in the graph after the scattering vertex, we 
label the corresponding x factor with a prime to indi
cate this. Thus a typical segment following the scat
tering vertex, and after a net number 2m of x's have been 
absorbed, would be denoted x;2m, where the primed x's 
are the same as the unprimed ones except that p is re
placed by pf. That is 

gy 1 
%2m = ~ 

2co \.mpf -k 2m 
(II.6b) 

Only the value of the scattering vertex (which is not 
paired with a propagator) remains to be discussed. I t is 
easy to see that both types of scattering vertex, Figs. 
1(a) and 1(b) have the same value. By including into 
the value of the scattering vertex the kinematic factors 
for the initial and final free <j> particles as well as the 
over-all four-momentum-conservation delta function for 
the entire graph, we obtain the following constant fac
tor which appears in the value of every graph13: 

-~2ig(2ir) 
b{p+k-pf -k')/g*p\ 1/2 

(1<W£E' ) 1 / 2 \v*< 
(IL7) 

13 The scattering vertex has an extra factor of \/N when the 
scattering is in the forward direction. This does not alter the 
angular distribution in the differential scattering cross section. 
For a clear exposition of this point, the reader is referred to 
Schwabl and Thirring (Ref. 1). 

( Q ) 

m 

T 

m 

m 

» 

T 

9 

( C ) 

FIG. 4. Two low-order graphs and one higher order graph, 
all with a scattering vertex of the first kind. 

Because the factor in (II.7) occurs in every graph we will 
ignore it in the summation and then tack it onto the 
final result. 

Our method of attacking the graph summation will 
be to divide the graphs into several well-defined groups 
and sum the groups separately. To begin with, we 
temporarily exclude from consideration all graphs con
taining "straight-through" nonscattering vertices such 
as the one in Fig. 2(c). Since x2n has not been defined 
for n = 0, we also temporarily exclude all graphs con
taining x0's. Then we consider the remaining graphs in 
this order: first those in which the scattering vertex is 
like that shown in Fig. 1(a) which we call type (a) 
graphs; and then those with scattering vertex like that 
in Fig. 1(b), which we call type (b) graphs. 

Now we are ready to begin summing the type (a) 
graphs. To provide familiarity with the notation we ex
plicitly evaluate the three graphs given in Fig. 4. The 
first two have the propagator-vertex factors keyed in. 
They have the values #2^2' and x_2x_2

/, respectively. 
The last graph in Fig. 4 is of much higher order but is 
evaluated in the same way by assigning x factors to 
each propagator-vertex combination and multiplying 
them all together. Its value is x^XtXzYfax^xz . Now 
notice that the value of any type (a) graph in which 
the scattering vertex immediately follows an X2 graph 
segment may be written with its x factors similarly 
grouped. Every such graph consists, up to the scatter
ing vertex, of an x2 factor and pairs of x factors of the 
form X2nX2n~2', and after the scattering vertex consists of 
and pairs of x' factors of the form x2w

/X2m-2/- The value 
of the general graph of the class may be written 

X2(X4X2)mi(xQXA)m2(x8Xb)
m3- • • 

X i c / f e V ) 1 1 ^ ^ / ) 1 2 ' (II.8) 
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that is, the general graph has Wi+1 segments with the 
value #2, W1+W2 segments with the value #4, and so on. 
To obtain the total contribution from all these graphs 
we sum over the w's and /'s. However, first observe by 
comparing the graph in Fig. 5 with the high-order 
graph in Fig. 4 that several topologically distinct graphs 
may contribute the same value to the sum. We must 
therefore, before carrying out the m and / sums, multiply 
the general expression in (II.8) by an appropriate 
multiplicitly factor giving the number of different 
graphs with the same value (for given m's and Z's). So 
our task is to count the numbers of different graphs with 
the same values. This is easier than it sounds. In the 
first place, without any x4's in the graph there clearly 
cannot be any #6's, and without xc's, x8's aren't possible, 
and so on. Also, at any x<2 segment an X4 segment can be 
created simply by adding a two-x absorption vertex 
such as in Fig. 2(b). But in order not to disturb the 
structure of the rest of the graph, a two-% emission 
vertex must also be added immediately after the ab
sorption vertex. This process is illustrated in Fig. 6. 
Thus, every time an %± is added, an x2 is to be added 
immediately after it. Of course, this can be done any 
number of times in succession at any of the x% vertices 
in the graph. If it has been done once, then there is at 
least one #4 in the graph, and by the same procedure one 
or any number of x§x\ pairs may be inserted into the x4 

segment. Thus we have the problem of counting the 
ways of putting indistinguishable factor pairs #2771+2̂2™ 
into indistinguishable graph segments X2m. This is 
easily solved. The number of ways to put k like marbles 
into n like boxes is given by the binomial coefficient 

( , J. Referring back to the general expression 

(II.8), we see we must multiply it by a product of bi
nomial coefficients giving the number of ways to insert: 
m^ pairs with the value XQXA into mi segments labeled 

X4; w3 pairs with the value X$XQ into the m% segments 
labeled x%, and so on. The same instructions obviously 
apply to the x"s separately from the x's; there is no way 
to mix them. Thus, we obtain the following expression: 

/ W 1 + W 2 - 1 \ 
x2(x4x2)wl( Kx«Xi)m* 

\ w2 

W2+W3— 1 /m2-\-mz~l\ 

\ Mz J 

X{ JWxM J " ' , (IL9) 

which is to be summed over all values of the tn's and /'s. 
The summations are most easily done in stages in a 
particular order. The method is demonstrated in 
Appendix A. The result is found to be expressible in 
terms of certain infinite continued fractions. In this 
first example, in which the type (a) scattering vertex 
occurs between the graph segments X2 and X2, the sum 
is given by 

X2 X2 

S2
(a) = . (11.10) 

Here F2 is a convergent continued fraction which is 
described in Appendix A. Explicitly, F2 can be written 

F2=-
X2X4 

I — X4X6 

(11.11) 

1 — XQX$ 

1-

FIG. 5. Graph with different 
structure but same value as 
graph in Fig. 4(c). 

F2 is the same as F2 except that the x's are replaced by 
x"s. 

Next we consider all those type (a) graphs whose 
scattering vertex follows an x4 graph segment (two such 
graphs are illustrated in Fig. 7). The general graph 

-^ ^ 

FIG. 6. The insertion of an #4̂ 2 pair into 
an arbitrarily located x% segment 
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X4 

FIG. 7. Low-order graphs in which the scattering 
vertex lies between segments x± and Xi. 

value, with multiplicity factors included, is obtained by 
the same arguments that led to (II.9). I t is 

\ nii J 

x ( 
Xz'xtix/x^)1 

Ms 

h > 
(11.12) 

Note the slight difference in the multiplicity factors in 
(11.12) compared with (II.9). The difference is due to 
the fact that now all graphs must contain at least one 
X4 and one # / factor as well as at least one x% and one 
X2 factor. Again we must sum over all tn's and l's, and 
again the result is a product of continued fractions: 

&<•> = -
X2 X4 X2 X4 

1- -/Y 
(11.13) 

Continuing in this fashion we easily determine, in 
terms of related continued fractions, the sums for all 
the graphs with scattering vertices like that in Fig. 1(a). 
If we denote by S2m

(a) the sum for all such graphs in 
which the type (a) scattering vertex lies between graph 
segments x<im and #2m', then we find 

S2m
W = 

X2 X2n X2 %2n. 

1-F2 1 — F%m I — F2 1 — F2m 
. (11.14) 

I t should be noted here that (11.14) holds for negative 
as well as positive values of m. A negative value of m 
merely signifies that the number of emissions prior to 
the scattering vertex exceeds the number of absorp
tions. From the original definition, Eq. (II.6a), we see 
that %-m— —-xm; and since the F's are quadratic in the 
*'s, F_m = Fm. Thus, S^m

(a) = S2m
(a\: 

The contribution to the scattering amplitude from all 
allowed graphs having scattering vertex of type (a) 
is then the sum of all the S'$: 

Al*\a,a')^ E - W a ) , (11.15) 

where So(a)—l, from the single lowest order graph (it 
cannot be modified without introducing x0 factors, and 
so retains its unmodified value). Because of the con
nection between the 6*2m and Bessel functions (explained 
in Appendix A), the final sum in Eq. (11.15) can actually 
be carried out in closed form: 

AW (<*,*')'-
1 

Jo(a)J0(a') 

Jo(a-af) 

"/oMW)" 

YL Jm(oi)Jm{a) 

(11.16) 

Next we consider all nonexcluded graphs in which the 
scattering vertex is like the one in Fig. 1 (b). These will 
be referred to as graphs of type (b), and their contribu
tion to the amplitude will be denoted A^h){a,a!). Again 
we will begin by summing all graphs which have an x2 

segment immediately prior to the scattering vertex. 
Momentum conservation at the scattering vertex then 
dictates that the segment following the scattering ver
tex should be #0', which has been temporarily forbidden. 
Thus, when an x2 segment immediately precedes scat
tering vertex (b), there can be no vertices following it. 
That is, the graphs look like those in Fig. 8. The value 
of any such graph may be written in a manner similar 
to Eq. (II.8), except that no #'s appear. After including 
the proper multiplicity factors we find 

S 2
( 6 ) = Z X2(x4X2)mi 

{m} 

/ W 1 + W 2 — 1> i x [ jo*^4)m2--- = 
1-F2 

where Fi is the same continued fraction found earlier. 

* 2 

FIG. 8. No %' factors occur in graphs in which a double emission 
scattering vertex occurs immediately after an x2 segment. 
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In general, for graphs of type (b), if the scattering vertex 
immediately follows an x2n segment we find 

S2J
bK<*,a) = -

x2 %1n 

1 — F2 1 — Ftn 

x2 

X-
X2n-2 

1 - 2 Y 1-F2 

(11.17) 

Thus the contribution to the amplitude from graphs of 
type (b) is also easily found by adding all the S<tn

w'-

i 4 < » ( « y ) = E 5 , » < » = 
Ji(a-a') 

Jo(a)J0(a') 
(11.18) 

With the amplitude evaluated to this extent we return 
to the question of the excluded graphs. First we consider 
the graphs with one or more xo's in them but still no 
straight-through interactions. Individually they are 
infinite; however, for each such graph it is possible also 
to draw its opposite—another graph equal in magnitude 
but with opposite sign. This is illustrated in two in
stances in Fig. 9, and may be proved rigorously. Be
cause the graphs are individually infinite, the sums of 
the equal and opposite graphs must be examined in 
detail. The problem involved is essentially one of wave-
function normalization, and can be handled in the 
usual way by explicitly introducing an adiabatic damp
ing factor into the interaction Hamiltonian.14 A more 

( a ) 

(b) 

FIG. 9. Pairs of divergent graphs containing xo segments which 
when added together make finite contributions to the scattering 
amplitude. 

• 

i 

FIG. 10. Graphs with straight-through 
interactions in #0 segments. 

convenient method, for our purposes, which allows the 
summation of all such pairs of graphs in closed form is 
described in Appendix B. Of course both methods give 
the same result, which is to multiply A(a,a') by the 
additional factor J0(a)Jo(a'). Thus, to this point the 
wave-function-normalized amplitude AN(OL,OI), with 
the over-all factor of (II.7) included, is given by 

-2ig' 
{2irYb{p+k-y-kf)f p 

(16a 

-k-f-k')/ p \ 1 / 2 

' £ £ ' ) 1 / 2 \V9/ 

X [ / o ( a - a ' ) + / i ( a - a ' ) ] - (H.19) 

Next we include the straight-through lines, which 
can occur in any graph, by considering them in two 
classes. The first class consists of all graphs containing 
lines through x0 segments; some such graphs are shown 
in Fig. 10. An involved but elementary calculation, 
which we omit, shows that the summation of all of these 
graphs only provides an over-all phase factor.15 Thus 
they have no effect on the transition probabilities and 
we ignore them. The second class consists of all graphs 
with straight lines through any and all segments x2m, 
where w ^ O . This final modification is not quite straight
forward and has significant effects; we will discuss it in 
some detail now. 

Let us consider the addition of straight-through inter
actions in the same spirit as the foregoing developments. 
A straight-through interaction can be inserted into any 
segment x2m without affecting in any way the <j> momen
tum assignment at any propagator either before or after 
the insertion. The sole effect on the graph is to increase 

14 The technique is clearly detailed in Ref. 11, pp. 339-543, 

15 These graphs would normally lead to a mass shift for the 
electron due to its photon cloud. However, since we are ignoring 
radiative corrections, and since the external laser field is well 
localized, we have no such persistent effects. See, however, Sec. y . 
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\s 
FIG. 11. Lowest order Compton scattering graphs. As before, 

the single vertical line is the electron, the horizontal lines are 
photons with wave vector kM and the single skewed line is the 
scattered photon with wave vector &/. Incoming (outgoing) 
photons are always drawn entering (leaving) the diagram from the 
left (to the right). All graphs satisfy ^ - j - ^ = />/+£/> where p^ 
and py? are the initial and final electron four-momenta. 

by one the number of #2m segments in it. Or, in other 
words, the #2m into which the interaction was inserted 
becomes (#2m)2. Clearly, this can be done any number of 
times in any segment. Thus, the entire effect of all such 
interactions is to make the replacement 

%2n —» &n = #2n 2 (2#2n)Z = ~ 
1=0 1 — 2x2n 

(11.20) 

By returning to the original definition of the x's in 
Eqs. (II.6a), (II.6b) one observes that this inclusion of 
straight-through interactions is completely equivalent 
to a change in the <j> mass: 

M2->M2+gVco. (11.21) 

The effect on the amplitude of including the straight-
through interactions is nontrivial. The replacement of 
%2m by &m gives partial sums S2m

(a) and 5 2 m
( 6 ) which are 

again expressible as products of Bessel functions, but 
they are significantly more complicated than before. 
(The new continued fractions and their relation to 
Bessel functions are examined in Appendix A.) The 
wave-function-normalization factors are no longer 
simply J0(a)Jo(a). 

The end result is that the fully normalized ampli
tude has the form 

(2Tyd(p+k-pf~k')/ P 
-2if 

(16W£E ' ) 1 / 2 VFV 

Xt3o(a,a') + M«,<x;)l, (IL22) 

where (with e0=l, em^iz=2): 

do(x,y) = (N(x)N(y)ri/2 

J-X+m(x) J-y+m (j) 
X 

\m>0 J-.x(x)J-y(y) 

( x —•> — x\ \ 

^ _ ) j > (H.23) 

g1{x,y) = {N(x)N{y)r^ J * V 

X 
\ m >, 1 

Jx+m ( — OC) Jy+m+l ( ~ y) y 

Jx(-x)Jy(-y) J 

N(x) is defined by the relation <0o(#,#)= 1. 
With the inclusion of the straight-through interac

tions and the subsequent normalization, we have com
pleted the summation of the semiclassical "Compton 
scattering" diagrams in our model. We now turn to 
electrodynamics. 

III. ELECTRODYNAMICS AND COMPTON 
SCATTERING 

We Will apply to problems in electrodynamics the 
techniques described in the preceding section. The first 
such problem to be considered is that of Compton 
scattering in a high-intensity monochromatic laser beam 
of wave vector £M= (co,k). We will compute the scattering 
amplitude, as before, in the limit of large numbers of 
photons N, and volume V, such that the density p 
given by the ratio N/V remains fixed and finite. That is, 
we are interested in the -S-matrix element 

lim (p';k',(N-i)k\S\p;Nk), (III.l) 
N,V -> oo 
N/V=P 

where pyL=(E,p) and pli
/=(Ef,p/) are the initial and 

final electron four-momenta, and k/- = (o/,k') is the 
wave vector of the scattered photon. These four-
momenta satisfy k2 = k'2 = 0, and p2 = p'2 = M2, where M 
is the free-electron mass. In electrodynamics the inter
action Hamiltonian Hi(x) is somewhat more compli
cated than that used in the model calculation in.the 
preceding section. I t is given by the familiar expression 

- (d »<$>*)($>) A»-e2N(<t>*<$>A»A»). (111.2) 

We have, for simplicity, represented the electron by a 
scalar operator (f>(x); A^x) is the customary field opera
tor for the electromagnetic potential. 

The calculation of the exact scattering amplitude will 
be attacked in the same spirit as in the model calcula
tion, by summing to all orders the Feynman graphs 
appearing in the perturbation series (II.2). The lowest 
order graphs are now three in number and are shown in 
Fig. 11. As in the model calculation of the preceding 
section, all higher order graphs will also consist of a 
single continuous electron line joined at a number of 
vertices by free photon lines. All of these photon lines 
except one are described by the beam wave vector &M; 
the odd photon has wave vector k/. As before, we call 
the vertex where the odd photon joins the electron line 

(11.24) (a) (b) (c) 

FIG. 12. Possible scattering vertices in scalar electrodynamics. 
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the scattering vertex; all others are nonscattering ver
tices. From the nature of the initial and final states of the 
S-matrix element of interest, Eq. ( I I I . l ) , and from the 
structure of the interaction Hamiltonian given in Eq. 
(III.2), it is apparent that the nonscattering vertices 
consist of five kinds only. The terms in Hi which are 
linear in A^x) give rise to vertices at which a single 
photon is either absorbed from or emitted into the beam; 
and the term in Hi which is quadratic in A^x) leads to 
vertices at which two photon lines simultaneously meet 
the electron line. I t is also easy to see that there are 
only three possible kinds of scattering vertex: two pho
tons are simultaneously emitted with wave vectors £M 

and kf/; or, one photon with wave vector &M is absorbed 
from the beam and another with wave vector kp! is 
simultaneously emitted; or finally, a single photon is 
emitted with wave vector kj. These varieties of scat
tering and nonscattering vertices are illustrated in Figs. 
12 and 13. 

As in the model calculation, we are able to make head
way by dividing the possible combinations and mixtures 
of scattering and nonscattering vertices into several 
groups and then summing the groups of graphs separ
ately. We chose to divide the graphs as follows. First, we 
temporarily exclude from consideration all graphs con
taining one or more electron propagators with vanishing 
denominators; we also temporarily exclude all nonscat
tering vertices arising from the quadratic term in Hi 
[ that is, those vertices shown in Figs. 13(b) and 13(c)]. 
Then we consider the remaining graphs in this order: 
All graphs whose scattering vertex is similar to that 
shown in Fig. 12(a); then graphs with scattering vertex 
like that in Fig. 12(b); and finally graphs with scatter
ing vertex like that in Fig. 12(c). These will be called 
graphs of types (a), (b), and (c), respectively. 

Now, for the first set of graphs we proceed as follows. 
Except for the scattering vertex, each vertex can be 
paired with a propagator in the manner described in 
the model calculation. This gives rise to propagator-
vertex factors for each segment of the graph, just as in 
the model calculation. Because the vertices are slightly 
different, the value of the typical factor will be different 
from the value in the model situation, but not in any 
unexpected way. 

The value of the propagator-vertex factor xn associ
ated with the graph segments illustrated in Fig. 14 is 
determined from the usual Feynman rules for scalar 
electrodynamics in the manner described in the model 

(a) (b) (c) 

FIG. 13. Possible nonscattering vertices. 

-nk p +-nk 

FIG. 14. Typical one-photon nonscattering vertices. 

calculation. I t is easily determined, in the limits 
iV,F->oo, N/V=P, to be 

%n I 

2n\ 1/2 elp\ 

2oo/ nk-p 
(III.3a) 

where e—ejjk), the polarization four-vector of a beam 
photon. As in the model calculation, if the graph seg
ment falls after the scattering vertex we label the 
propagator-vertex factor with a prime: 

/e2p\1/2 e-fp a! 

\2coJ nk'p' n 
(III.3b) 

Due to the existence of two-photon as well as one-
photon vertices in scalar electrodynamics, we must also 
compute the propagator-vertex factor yn associated 
with graph segments of the types illustrated in Fig. 15. 
For our purposes only the value of 15(c) will be needed. 
In the limits N, V —> °o it is 

e2p 1 
ym= 

2co mk-p m 
(III.4a) 

We also label the y factors with a prime if the segment 
falls after the scattering vertex: 

V 
yn 

2co mk-pf m 
(III.4b) 

Now we are in a familiar position; we can write down 
the value of any graph simply by writing the appropri
ate product of propagator-vertex factors and multi
plying it by the constant over-all factor coming from 
the scattering vertex. In this case that over-all factor is 
easily found to be -{-ieRie- e', where 

Ri=-
2{2TrYbp+k,v 

(1<WEE') 

e2p\1/2 

(III.5) 

and e means eM(&')> the polarization vector for the scat
tered photon. 

From this point everything goes exactly as in the 
model calculation. The type (a) summations give rise to 
products of infinite continued fractions; these in turn 
are related to Bessel functions; and ultimately all the 
summations can be performed explicitly. The result, to 

file:///2coJ
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p+mk p+mk p + mk 

FIG. 15. Typical two-photon nonscattering vertices. 

this stage of the calculation, is 

/0(2a-2a r) 
+ ieRi— e • e 

J«(2a)JQ{2af) 
(III.6) 

Next we sum the set of type (b) graphs, those graphs 
in which the scattering vertex is like that in Fig. 12(b). 
The similarity to the model calculation is apparent here, 
too, and the result is 

J2(2a-2a') 
+ieRx e e ' 

J0(2o)J0(2a') 
(III.7) 

However, the third set, those graphs with the scat
tering vertex like that in Fig. 12(c), is new and has no 
analog in the model. In the first place, the contribution 
of the scattering vertex itself is no longer a constant, 
but depends on its position in the particular graph under 
consideration. In a general graph, illustrated in Fig. 
16, in which the scattering vertex occurs between the 
segments xn+i and xn', the contribution of the scattering 
vertex itself is — ieR2(p+(n+l)k)'e'j where 

# 2 = -
2(27rydp+k,p'+k' 1 

(8co'££')1/2 Vz/ 
(III.8) 

Also, by applying the rules for evaluating graphs and 
summing them we find the same continued fractions as 
before, but in slightly different combinations. It is 
straightforward to determine that the sum of this set 
of graphs is given by 

ieR2 £ [>+(»+!)*]• * { 
Jn+i(2a)Jn(2a'y 

J0(2a)J0(2a') . 
(III.9) 

Here the required Bessel function summations are easily 
carried out using known identities16 and an additional 
identity which may be derived easily: 

(z/2)ZMz-j)+Ji(z-zr)i 

J2 (tn+l)Jm+l(z)Jm(z')-

16 G. N. Watson, Theory of Bessel Functions (Cambridge 
University Press, New York, 1958), p. 145. 

After performing the sums, we obtain for this third set 
of graphs the result 

ieR< 
r J1{2a~2ar) n / a \ 

U e ' H W ) . (III. 
LJo(2a)Jo(2a')J\ a~a' J 

10) 

Now we may return to the excluded graphs. In just 
the same way as in the model problem we may explicitly 
include, in pairs, those graphs with zero denominators. 
By introducing adiabatic switching explicitly, the di
vergent terms are seen to cancel. The finite remainders 
again contribute with the net effect of multiplying the 
amplitude already obtained by the factor Jo(2a)Jo(2a'). 
Alternatively, as explained in Appendix B, we may re
gard the absence of these graphs from the sum as de
stroying the unitarity of the S matrix and leading to 
the necessity for wave function normalization. The 
normalization is easily carried out and leads to the 
same result. Thus, after adding the separate sums 
in Eqs. (III.6), (III.7), (111.10) and multiplying by 
Jo(2a)Jo(2a')9 we have the gauge-invariant expression 

— 2ie-
(2*-)** P+k,p'+k'/e2p\m 

'EE')v\v*) (l6w>'EE'Y 

XZM2a-2a')+J*(2a-2o')lXGl9 ( I IJ l l ) 

where G\ is the gauge-invariant quantity given by 

p-e'p'-e p-ep'-e 

p ' - k p - k 
(111.12) 

Having summed all the diagrams with only one-
photon nonscattering vertices [the type shown in Fig. 
13(a)], we now go one step further and include two-
photon nonscattering vertices. It is vastly simpler at 
this point to restrict the analysis to a circularly polar
ized laser beam. This choice will destroy the explicit 
gauge invariance we have maintained so far, but it also 
will allow us to ignore double-emission and double-
absorption nonscattering vertices [shown in Fig. 13(c)]. 
This simplification is easily verified by expanding 
Afl(x)Afi(x) in circular polarization operators, and using 
the fact that 

€ « ( * ) • € « ( * ) = € L ( * ) ' € L ( * ) = 0 , 

where e\k) is the polarization four-vector appropriate 
to a photon of wave vector k^ and circular polarization 
X. The only remaining two-photon nonscattering ver
tices for consideration are the straight-through variety 

p'+nk 

p + (n+l)k 

FIG. 16. Typical one-photon 
scattering vertex. 
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Yn 

FIG. 17. Graph alteration due to the insertion 
of "straight-through" interactions. 

[shown in Fig. 13(b)], and in the model calculation we 
have already indicated how they may be included with 
very little work. 

The procedure for including the straight-through ver
tices is as follows. Into any graph segment, say one 
labeled xmior definiteness, a straight-through interaction 
may be inserted as shown in Fig. 17. This makes two 
graph segments out of the original one, and changes 
the contribution to the graph value from xm to xmym. 
But there is no restriction on the number of times this 
process may be repeated. Adding a second straight-
through vertex gives xm(ym)2, and a third gives xm(ym)z 

for the value of the resulting segments. Just as in the 
model calculation, the net effect of adding an arbitrary 
number of straight-through vertices in every graph seg
ment is to replace xm by £m, where now %m=%m/(l—ym). 
We can write £TO explicitly in terms of the constants a 
and b, and we obtain 

2(e2p/2u)l/2P't 

(p-\-mk)2—M2—e2p/o) m~b 

in the case of an absorption vertex, and 

t * = -
Sffl 

2(e2
PAo)1/2£-€* 

(p-\-tnk)2—M2—e2p/cx) m~b 

(III.13a) 

(III. 13b) 

for emission. The complex conjugates enter, of course, 
because of the decision to work with circular polariza
tion states. 

The replacement of x's by £'s alters the form of the 
basic continued fractions almost exactly as it did in the 
calculations of Sec. II; and again the resulting covariant 
sums, the analogs of those in Eqs. (11.23) and (11.24), 
cannot be carried out. However, in this case we may 
simplify things considerably by completing the cal
culations in the laboratory reference system. This is 
because £•€=£• e*=0if the electron is at rest. The re
sulting amplitude may be written 

-lie-
2(27r)46p+A!_p'_fe' 

(16a 

)p+k-p'-k>/ p \ 1 / 2 

'££')1/2 Wv 

where 91 is the normalization factor; also 

T=e*»'J^v(21 cl | )/J_*(2 [ a' |) 
and 

tan<£'=Im(aO/Re(a')-

The normalization factor 91 is obtained in the same 
way as before (see Appendix B) and is found to be 

9 r*=J £ ej + {-*'->&'}. (IIL15) 

IV. HARMONIC PRODUCTION 

As we mentioned before, the number of photons pres
ent is so large that depletion of the beam due to a net 
absorption of 1, 2, or n photons from it cannot be ex
pected to change the beam's characteristics in any im
portant way. Thus one should expect, in the scattering 
of electrons in a laser beam, to find all of the (incoherent) 
processes which are represented by the matrix element: 

lim (pf; k',(N-n)k\S\p) Nk). (IV. 1) 
N,V -+ oo 
N/V=p 

When n=l the matrix element of course describes 
Compton scattering; when ri>\ it describes harmonic 
production at the harmonics of the beam frequency. 
The explicit calculation of the matrix element for any 
n^\ presents no difficulties which have not already been 
discussed. We will discuss briefly the case n^l, ex
cluding for brevity the double-photon nonscattering 
vertices. 

The graphs to be considered are graphs with n—1 
more photons absorbed than emitted. Some low-order 
first harmonic graphs are illustrated in Fig. 18. Non-
scattering vertices and electron propagators are again 
associated in the manner described earlier, so that each 
graph may easily be evaluated in terms of x factors. 
The graphs are again divided into groups according to 
the kind of scattering vertex and are summed first 
without including "straight-through" interactions or 
x0's. 

The general scattering vertex types which occur are 
labeled (a), (b), and (c), and are illustrated in Figs. 

X 9l[e • e ' * + r € * • e ' * ] , ( I I I . 14) 
FIG. 18. Low-order graphs involved in first harmonic 

production. In all of the graphs p-{-2k=p'-\-k'. 
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p'+(l+l-n)k p'+(*-|-n)k p'+(«-n)k 

FIG. 19. The three types of scattering vertex for 
the (n~l)st harmonic. In each graph p-\-nk—p'-\-kr. 

19(a), (b), (c), respectively. In each case, immediately 
prior to the scattering vertex, the electron has momen
tum p»+lkp, having at that point absorbed a net num
ber / of photons, where / can of course be any positive 
or negative integer. The momentum conservation rela
tion for the (n—l)st harmonic, pn+nk^p^+k/, then 
determines the momentum of the electron immediately 
following the scattering vertex. Following the earlier 
discussions in Sees. I I and I I I one may directly write 
down the sums of all the graphs associated with each of 
the three scattering vertices for given values of n and /. 
One finds, after translating the continued fractions into 
Bessel functions, 

Jl(2a)Jl+1^n(2a,)/M2a)J0(2a/), (IV.2a) 

Ji(2a)Jl^n(2a/)/J0(2a)Jo(2af), (IV.2b) 

Ji(2a)Ju-n(2a')/J*(2a)J*(2a'), (IV.2c) 

for the sums of graphs associated with the scattering 
vertices of types (a) through (c), respectively. 

I t merely remains now to multiply each of Eq. 
(IV.2a)-(IV.2c) by the value of the appropriate scat
tering vertex and sum over all values of /. The vertex 
values for the general nth harmonic do not depend on n, 
and so are the same as given in the discussion of Comp-
ton scattering. The sums are easily performed using the 
Bessel function formulas already given. The normaliza
tion factor is also the same as in Compton scattering. 
So finally, after some simple rearrangement, the result 
of including everything in the sums except the straight-
through interactions is found to be 

-~2ie(2T)i5p+nk,p>+k> /e2p\1/2 

X[_Jn-i(2a~-2a,)+Jn+1(2a-2a')']XGn. (IV.3) 

This is seen to be almost identical with the comparable 
expression, Eq. (III.11), obtained for Compton scat
tering. The sole differences are the change in the Bessel 
function indices and the simple generalization from the 
gauge-covariant product Gibp+k^+w to the gauge-

covariant quantity Gnvp+nktp'+k'y where Gn is 

p - ef p ' - e p - e p ' - e 
Gn~~ < 

nk-pf Z'P 
(IV.4) 

The consideration of the remaining (two-photon) 
vertices has the same complicating effect on the ampli
tude (IV.3) as on the Compton scattering amplitude 
(III. 11). Since it would add nothing new to the discus
sion, we will not explicitly write out the resulting com
plete amplitude for harmonic production. 

We may point out here a consequence of the fact that 
we have ignored the spin of the electron. Notice that be
cause Jm(0) = dmo, Eq. (IV.3) says that harmonic pro
duction in the forward direction (where a~af) vanishes. 
This is easily understood, since the total spin of n in
coming photons with frequency co cannot be carried 
away by the single forward-scattered photon with fre
quency noi if n> 1. If the electron were given spin, how
ever, forward scattering in the first harmonic only 
would also be possible, since the electron by reversing 
its spin could carry off one extra unit of angular 
momentum. 

V. DISCUSSION AND CONCLUSIONS 

I t remains for us to compare our results with those 
found in Refs. 7 and 8,. and to comment on the origin of 
the differences obtained. In particular, we must indicate 
why we find no intensity-dependent frequency shift in 
the scattered photon, and also why our amplitude 
differs. 

The answer to the first question is implicit in our 
treatment of the problem. We compute the transition 
amplitude for a scattering event in which one and only 
one photon is removed from the incident beam, Hence, 
if there were initially N photons in state k, then in the 
final state N~l photons will occupy state k. Since the 
5 matrix commutes with the momentum (energy) opera
tor we immediately have 

or 

P.+Nk^pj+iN-^k.+k; 

PfiT"&M~ Pii \ Kn j 

(V.l) 

where p, p' are the initial and final momenta of the tar
get electron and kf is the momentum of the scattered 
photon. The above equality is of course independent of 
N. Hence, we obtain no intensity-dependent frequency 
shift. Furthermore, this analysis remains valid even if 
we describe the incident and final states of the radia
tion field in terms of "coherent" states.10 In that case 
the incident and final states are 

! * < > = £ aN{k)\Nk,p); 

l * / > = E aN(k)\Nk,k\p'), 

(V.2) 
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respectively. The vS-matrix element is given by 

<* / |S | $,•)=<*/!*<> 

+ Z arf*N-i((N-l)k,k',pf\S-1\p,Nk). (V.3) 
iV=l 

Since the states \p,Nk) are eigenstates of the total 
momentum operator PM, and [5,PM] = 0, Eq. (V.2) 
may be rewritten as 

X £ a ^ x ^ N - l)k#,pf | T | p,Nk). (V.4) 

In obtaining the right-hand side of Eq. (V.4) we make 
no use of perturbation theory. Our only assumption is 
that asymptotically, i.e., at / = ± ° o , the electron and 
photons do not interact. We also note that the argu
ment of the function does not depend on N. The only 
dependence on N is in the T-matrix element. I t is only 
at this stage, in the computation of the T-matrix ele
ment, that we pass to the "classical" limit in the sense 
that any depletion or enhancement effects due to the 
Bose-Einstein statistics are ignored: Any factor of the 
form \/(NzLm) is replaced by \/N in the limit as 

In contrast to this, the treatment given in the litera
ture7,8 is, as far as the radiation field is concerned, ab ovo 
classical. Hence after switching on the external field the 
electron can absorb and emit radiation in a completely 
continuous fashion. Similarly, the energy of the external 
field can be shared in a continuous way between the 
electron the incident radiation mode and the scattered 
radiation mode. Thus there is no counterpart to Eqs. 
(V.l) and (V.4), and an intensity-dependent frequency 
shift cannot be ruled out on purely classical arguments. 
Indeed, as shown by Brown and Kibble7 and Goldman,8 

such frequency shifts appear. 
Interestingly enough, we can, after suitable manipu

lation, also obtain such results. Briefly, we split the in
teraction Hamiltonian density, Eq. (III.2), into two 
parts 

HI(x) = HI^(x)+H1W(x), (V.5) 
where 

HI^(x) = ieN{ci>*dlct>}A» 

-etNitUiA^A^+A^A^}, (V.6) 
and 

HI^(x) = -eW{<j>*<t>(A/+,>A'><-)+All<->A»<+'>)}. (V.7) 

By replacing i7/(2)(#) by its c-number value and in
corporating it with H0(x) of the electron field, one ob
tains a new momentum energy relationship for the 
electron: 

j52 = f»2+Aw2=sf»2+e2p/a). (V.8) 

Following Brown and Kibble we set 

p = p+Atn?(2f-k)-1k; f^p'+Afn^f-k)-1!?. (V.9) 

And now upon evaluating 

l imiV-xx) , V-~><x>(p',(N -l)*,ife'|j5|p,iV*>, 

where the perturbation series for S contains only H{1) 

and not # ( 2 ) , we obtain agreement (in the case of scalar 
electrons) with Brown and Kibble7 and Goldman.8 Of 
course the frequency shift follows now simply from the 
standard Compton relations with p and pf replacing 
p and pf: 

v»+K=P,!+K'- (v.io) 
To recapitulate, agreement with Refs. 7 and 8 can be 
obtained both as regards the frequency shift and the 
scattering amplitude within the context of perturbation 
theory, but only at the expense of choosing asymptotic 
states for the electron which do not represent free 
particles. 

Note added in proof. I t should be pointed out that 
if one were to subject our results to empirical verifica
tion, the experimental setup would have to be such as 
to satisfy the assumption that the passage time of the 
laser pulse past the target electron is of relatively short 
duration. That is to say, by the time the scattered 
photon is detected, the target electron 'sees' no more 
photons. Only then can we insist that the outgoing state 
for the target describes a free-particle state. (Notice 
that such considerations are not necessary for standard 
two-particle scattering problems.) If, however, the 
passage time of the laser beam past the target electron 
is of such a large duration that we can start detecting 
scattered photons while the target electron is still inter
acting with the rest of the photons in the 'coherent' 
beam, then we are faced with a problem which differs 
fundamentally from standard scattering problems. [See 
in this connection M. L. Goldberger and K. M. Watson, 
Phys. Rev. 134, B919 (1964) and references therein.] 

I t is somewhat surprising that a classical treatment 
of the radiation field with correct asymptotic values for 
the electron propagation should yield identical results 
with a quantum treatment of the radiation field and 
asymptotically altered electron states. This does point 
out, however, that our differing scattering amplitude 
is a direct result of the lack of frequency shift. Within 
the framework of the Feynman-Dyson perturbation 
procedure, the two differing scattering amplitudes cor
respond to solving the differential equation for the U 
matrix with different boundary conditions. 

Finally, we wish to allay any misgivings about 
the use of perturbation theory by noting that the 
use of Dyson's U matrix in which Hi(t) is replaced by 
e~a^Hi{i) is eminently suitable for this type of problem. 
Since self-fields are ignored and only external fields of 
limited space-time extent are considered, the factor 
e-ot\ t\ automatically accomplishes the asymptotic separ
ation of the electron from the laser beam. 
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APPENDIX A: CONTINUED FRACTIONS 

In the text in Eq. (11.15) the scattering ampli
tude is written as a sum of products of continued 
fractions. The calculation of the first term in the sum 
6V00 is typical of the other S2»i and will be described in 
this appendix. Additionally we will mention some of the 
pertinent analytic properties of the continued fractions, 
and conclude from them that the formal manipulations 
involving continued fractions implied in the text may 
be performed rigorously. 

Recall that 6*2(a) was defined to be the sum over all 
m's and /'s from 0 to oo of the general graph value given 
i n E q . (II.9). That is, 

S2= L X2(xiX2)mi[ )(^T4)W2 

/m2+mz—l\ 
( ) («8^6) m 8 - - -E«2 ' (^V) Z l 

\ m% J [i} 

x( J(*eVW J(*8V)'»---. (Al) 

Clearly, the m and I sums are independent and may be 
done separately. Denote them by M and Ly respec
tively, so that S2(a) = MXL and consider M first. Ob
viously a subset among the set of graphs which sum to 
Si comprises those graphs which have only x2 and x± 
segments in them. The contribution of these graphs to 
M is easily computed by setting ^ 2 = ^ 3 = ^ 4 = • • • = 0 
and performing the sum over m\. Call the contribution 
of the subset M±] then one finds, assuming a is small 
enough so that the x's are small and the series converges, 

^ 4 = ^ 2 / ( 1 — ̂ 2^4). (A2) 

A larger subset which contains the I f 4 subset is the set 
of all graphs which have only #2, #4, and x6 segments in 
them. The contribution of this subset to M, denoted M$, 
is also easily computed. Set ^ 3 = ^ 4 = ^ 5 = • • • = 0 , and 
sum first over m2, then m\. One finds, again assuming 
small enough a, 

X2 

M,= . (A3) 
1 — X2X4 

1 — X±XG 

By continuing this procedure to larger and larger sub
sets of the whole, one is rapidly convinced that the 
pattern is generally true. A proof by induction is then 
simple to construct in order to establish rigorously that, 
for any integer 2n, the contribution to M made by those 

J . S . E B E R L Y 

graphs with only x2, x4, • • • ,X2n segments in them is 

X2 

M%n= . (A4) 
1 — X2X4 

1 - ' 

\ — X2n-2X2n 

The quantity of interest is, of course, M=\imn->o0 M^n• 
One can establish that the infinite continued fraction17 

obtained in the limit exists as a well-behaved function 
of a. In fact, with the aid of theorems due to Van 
Vleck,18 it can be shown not just that the continued 
fraction converges for sufficiently small a, but that it 
converges to a meromorphic function of a which is regu
lar at a = 0 . Even more, the convergence is uniform 
throughout the entire finite a plane away from the iso
lated poles of the function. Thus the sum M may be 
written as a convergent continued fraction which 
analytically continues the power series from its region 
of convergence near the origin into the entire finite a 
plane. Since a is directly proportional to the density p, 
it is by means of this analytic continuation that one is 
able to evaluate the Feynman perturbation series out
side of its region of convergence. 

I t is evident that there is no essential difference be
tween the summation and limit leading to M and the 
one leading to L. Thus, the results of the preceding 
paragraphs may be taken over bodily to evaluate L in 
terms of a continued fraction. The result for L is the 
same as for M except that a is replaced by a!. 

The continued fractions obtained here are well known 
in classical analysis. I t can be shown18 that 

V ( l - f t ) = / i ( a ) / / o (« ) , (A5) 

and more generally that 

# 2 m / ( l ~ F2m) = Jm(«)/ Jm-l(oi) , 

where Jm(a) is the usual cylindrical Bessel function of 
the first kind, and where F2m is defined by the recursion 
relation 

Flm ~ X2mX2m+2/ (1 ~ F2m+2) , ( A 6 ) 

and the boundary condition F2m=0(a2) as a —-» 0. 
Matters become more complicated when the straight-

through interactions of the text force the replacement of 

17 That the result of the summation should be expressible as a 
continued fraction is not surprising in light of the close similarity 
of our procedure and that of the Feenberg perturbation theory 
(cf. P. M. Morse and H. Feshbach, Methods of Theoretical Physics 
(McGraw-Hill Book Company, Inc., New York, 1953), Vol. II, 
pp. 1010-1018. 

18 Cf. H. S. Wall, Continued Fractions (I). Van Nostrand and 
Company, Inc., New York? 1948). 
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%2m by £2™. Now the fractions, written Ŝm are defined 
by the recursion formula 

&2m-~ ?2w?2m4-2/(l — ^2m+2j j (A7) 

with the same boundary condition. These SF's are less 
straight forward to analyze because £2™ is not pro
portional to l/2m as %%m was. However, Wall18 shows 
that they are still related to Bessel functions. We may 
write 

1 - ^ 2 

Jm-a(a) 

7m__l_a(Q:) 
(A8) 

and this is the form we have employed to express the 
complete amplitudes in Eqs. (11.22), (11.23) and 
(111.14), (111,15). 

APPENDIX B: WAVE-FUNCTION 
RENORMALIZATION 

To complete our computational program, we have to 
account for all the graphs excluded up to the present 
point. We are of course interested in evaluating the 
matrix-element (p'XN— l)k,k'\S\p,Nk) as a power-
series expansion in the limit as N —> °o. Some of the 
expansion coefficients refer to transitions which pro
ceed via the initial state. This is characteristic of per
turbation theory in general. In the case of a discrete 
spectrum, these transitions give rise to vanishing de
nominators, which cannot be computed in a direct 
manner. In nonrelativistic (noncovariant) stationary 
state perturbation theory the algorithm for calculating 
these coefficients is well known.19 We shall, nevertheless, 
recapitulate it here in order to bring out the similarity 
of our procedure to that employed in noncovariant 
stationary state perturbation theory. Briefly, one is 
given a Hamiltonian H=H0-\-Hi, and the spectrum 
and the state vectors of HQy viz., H0\n)=€n\n). The 
state vector (<£»•) which is an eigenstate of H0+Hi can 

now be computed to be: | <£>,•) = ]£» &n(i) | n). The compu
tation of the an

(i) is done in two steps. First, one com
putes &n

{i\ where ^ denotes the instruction that all 
terms with one or more vanishing denominators are to 
be omitted from the calculation. Next, by making use of 
the normalization requirement (<£,-|<l\-)=l, one obtains 

fl»(l) = S» w ( l+EI«m ( 0 l 2 ) " 1 / 8 . 

Our procedure, aside from some necessary modifica
tions, is similar. To make our discussion as transparent 
as possible, it will help to recall that in the scattering 
matrix element of interest the nonforward scattering 
line occurs at one vertex only. This observation allows 
us a convenient way to separate the interacting part of 
the Hamiltonian as follows: We write Hi of the model 
problem [Eq. (II.3)] in the interaction picture as 

where 
F j=#+Xft |x -„ 

ft=g ( ^ ( ^ W t x ^ ^ ^ ^ + x ^ " ^ ^ ^ ] 2 ^ (Bl) 

and 

A= J **(aO0(*)[y(*)-(x*(+)«a"*+x*(~)«"tt,*)2]il*. 

According to Dyson, the S-matrix element can be 
written as 

(p',(N- l)k# ISI p,Nk)= (P',(N- 1)*,*'1 

XPexp -i / [ft(t)+\h{t)yt \p,Nk) (B2) 
X=jr. 

Since our computations are to first order in X (and to all 
orders in H), it is convenient to rewrite Eq. (B2) as 

(p',(N- \)k,kf IS-11p,Nk)~g—(pfAN~ l)k,k'IP exp! - f ftll(t)+\h(t)ldt 
d\ [ J 

\p,Nk) 

Furthermore, 

g—(p',(N- l)k,k'\ P exp J -i j [H(t)+\h(t)yt \ \p,Nk) 

-i = g(p',(N-\)k,k'\P^v 

(B2') 

-i = g(p',(X-l)k,k'\U~1(0, + » ) 

-if H(t)dt\ j h(t')dt'P expl -i f 8(t)dt\\p,Nk) 

/

oo 

h(t')df 
• • - 0 0 

# ( 0 , - 0 0 ) 1 ^ * ) , CB3) 

19 L. I. Schiff, Quantum Mechanics (McGraw-Hill Book Company, Inc., New York, 1955), p. 152-154. 
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where 

and 

Z . F R I E D A N D J . S. E B E R L Y 

£?(0,-oo) = Pexp,' 

f / -1(0,+oo) = P e x p 

H{l')dtf 

- i H{t')dtf 

This equality can be most easily ascertained by expanding both sides of Eq. (B3). 
In passing we wish to point out that at this stage wave-function renormalization can be carried out by simply 

writing 
&'(0,-«>)\p,Nk) 

77(0, ~ oo) | p,Nk) = - — - — — , (B4) 
((p,Nk | W(0, - oo) tf'(0, - oo) | p,Nk))m 

where the prime is a shorthand notation for the per
turbation development of the U matrix in which 
vanishing energy denominators have been excluded. 
However, such a task is arduous and is fundamentally 
noncovariant. 

We now come to the crucial part of our wave-function 
renormalization method. Since H is that part of the in
teracting Hamiltonian which contains no radiative cor
rections or pair effects, we obtain an important identity, 

viz. 
t)(0, + «>)\p,Nk)=#(0,-«>)\p,Nk). (B5) 

This identity can be established by expanding both sides 
in a power series. Performing the integrations we note 
that the lower limit on the integrals play no essential 
role. The only place where the damping factor from the 
infinite limits of integration enters the scene is when a 
transition occurs back to the initial state. Since the in
termediate states entering into the expansion are, for 
fixed pm discrete in character (i.e., \m)= \pm,mk); 
Ho | m)=(po+mko) | m))t the sign of the damping factor 
is immaterial. 

With the aid of Eq. (B5) one obtains 

K« g(d/d\)(p',(N-l)k,k'\P exp - i / [H(t)+\h{t)~]dt \p,Nk) 

' / : 
=~ig(p'AN-l)k,k'\U-KO,+ «>) h(t')WU(0,+co)\p9Nk). (B6) 

In the limit of forward scattering p' --» py kf —» k and 
the ^-matrix element is now equal to 

(p,Nk \S-1\ p,Nk) = F(p,k)(p,Nk | 
XU-\^ + ^)U{^ + ^)\piNk)^F{p,k). (B7) 

The meaning of Eq. (B7) is simply that the covariant 
forward scattering 5-matrix element is equal to the 
normalization of the incident state times some factor. 
So the task of normalization of the incoming (or out
going) state consists of factoring a part of the ,5-matrix 
expansion in which the scattering occurs. Although 
this can be done, the procedure as it stands is still 
cumbersome. 

At this stage, however, one can easily resort to 
a trick which will facilitate the task. Introduce a new 
Hamiltonian 

H'=H+Ho'+r>Hi', (B8) 

where / / is the same as the model Hamiltonian of Sec. 
I I , HQ' is the kinetic energy part of the Hamiltonian 
appropriate to a new scalar field £(#). This new field 

interacts only with <£(x) through the interaction 
Hamiltonian 

Ri'= *(x)<i>(x)£2(x)d3x. 

The S-matrix element for the scattering of a single £ 
quantum off the target particle (<£ quantum) in the pres
ence of N particles of the x field is given by 

(p'tNkrflSlpMd-iP'iNkrflP 

Xexp! i (Hr+vH^dt \p,Nk,q), (B9) 

where 

\P>Nk,q)=&->\p,Nk), 

\p',Nkiq')=SS->\p',Nk), 

(BIO) 

and \p,Nk)} \pr,Nk) are eigenstates of H0 (model) as 
before. If we again neglect radiative corrections and 
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pair effects, then Eq. (B9) is simply 

(p',Nkrf 15-11 pjfk,q) = Kp'M | £q. <-> 

xtf(o; ̂oo) , / " # / 'dtU(Q,<*)&-»\p,Nk), (B l l ) 

which in the limit of forward scattering is 

{PiNkqlS'-llp^Nk^li^TrY 

X{\6q<?EE'V*)-^(p,Nk\ 

Xti'KO,+«>)ti'®,+«>)\p,Nk)\ (B12) 

where the primes have been added to indicate that the 
equality holds also when vanishing denominators are 
omitted from the calculation. 

The simplicity of factorization in the latter method 
stems from: (i) I t is easy to identify the scattering ver
tex by virtue of the fact that it consists of a line depict
ing a different particle, and (ii) that there is only one 
type of vertex, namely, the scattering can occur only at 
a point in which one £ particle is annihilated and another 
created. To recapitulate our method, the procedure is as 
follows: 

(a) Compute the ^-matrix element in a completely 
covariant fashion omitting all propagators which are on 

FIG. 20. x-particle-factored forward scattering 
graphs through order e2p. 

the mass shell. Denote this part of the result symboli-
callv by 

(p',(N-l)k,k'\S'-l\p,Nk). 

(b) Evaluate 

^ C ^ - 1 ) * I ^ ,+(o, + «>) z7'(o, + oo) i ̂ , ( i v - i)fe> 

and 

<p,(N- l)k | tf't(0> + oo) tf'(0, + oo) | p,(N- \)k) 

by the method of (B12). In doing so omit again propaga
tors with vanishing denominators. 

(c) Combining (a) and (b) 

(p',(N-l)k,k'\S-l\p,Nk) = -
(p',(N-l)k',\S'-l\p,Nk) 

« * ' , ( # - l)k | tf't(0, + oo) tf'(0, + oo) I p',(N- l)k)) 1/2 

X-
((p,(N- l)k I 01(0, + oo) tf'(0, + oo) | pAN- \)k)) 1/2 

. (B13) 

In terms of Feynman graphs the procedure can be Fig. 20) with the straight dotted line to indicate that the 
stated simply. One first computes the 5-matrix element X-particle vertex has been factored out. By collecting 
of interest, omitting contribution from graphs contain- the factors from the propagators and the remaining 
ing on-mass-shell propagators (i.e., in the language of vertices one obtains 
the text, omitting graphs containing x0 factors). Then 
the normalizations of the initial and final states are 1 i fp(^'e\ \c\( 4 2V 
computed by the method of Eq. (B12). For example, 2o\pkJ 
consider the renormalization factor through order pe2. 
One draws the graphs through this order (shown in which agrees with the expansion of {J0(2a)}~~2. 


